• 首页
当前位置: 首页 > 概率论与数理统计(工)(13174)

公共汽车车门的高度是按男子与车门顶碰头的机会在0.01以下来设计的,设男子身长X服从μ=170(厘米),σ=6(厘米)的正态分布

  • 2024-11-07 16:21:19
  • 概率论与数理统计(工)(13174)
阅读全文

设X的分布律为 X-1012 P0.20.30.10.4 求Y=(X-1)2的分布律.

  • 2024-11-07 16:21:18
  • 概率论与数理统计(工)(13174)
  • 1
阅读全文

若X在区间[0,2]上服从均匀分布,试求Y=X3的概率密度.

  • 2024-11-07 16:21:17
  • 概率论与数理统计(工)(13174)
阅读全文

设顾客在某银行的窗口等待服务的时间X(以分计)服从参数λ=1/5的指数分布.某顾客在窗口等待服务,若超过10分钟,他就离开。他一

  • 2024-11-07 16:21:16
  • 概率论与数理统计(工)(13174)
阅读全文

求下列分布函数所对应的概率密度: (1)F1(x)=1/2+(1/π)arctanx,-∞﹤x﹤+∞; (2)F2(x)= {1

  • 2024-11-07 16:21:14
  • 概率论与数理统计(工)(13174)
阅读全文

设随机变量X的概率密度为 f(x)= {x,0≤x≤1; 2-x,1﹤x≤2; 0,其他 求: (1)X的分布函数F(X); (

  • 2024-11-07 16:21:13
  • 概率论与数理统计(工)(13174)
阅读全文

已知随机变量X~N(0,1),则随机变量Y=2X+1的概率密度fY(y)=____.

  • 2024-11-07 16:21:12
  • 概率论与数理统计(工)(13174)
阅读全文

单个正态总体方差检验: H0:σ2=σ20↔H1:σ2≠σ20(均值μ未知) (1)检验的统计量为____. (2)

  • 2024-11-07 16:21:11
  • 概率论与数理统计(工)(13174)
阅读全文

用老工艺生产的机械零件的尺寸方差较大,抽查了25个,得样本方差s21=6.27;现改用新工艺生产,抽查25个零件,得样本方差s2

  • 2024-11-07 16:21:09
  • 概率论与数理统计(工)(13174)
  • 1
阅读全文

掷一枚骰子120次,得点数频数分布如下: 点数123456 频数232621201515 检验这枚骰子6个面是否匀称(a=0.0

  • 2024-11-07 16:21:08
  • 概率论与数理统计(工)(13174)
阅读全文
上一页1...3839404142...85下一页

最新文章

  • 小张与小李是一对夫妻,二人来自不同的外省县城,通过卓绝努力考大学进而留在省城工作。结婚后,双方类似的成长经历使他们达成共识:一定
  • 19世纪,向中国大肆走私鸦片的主要国家是()
  • 请结合具体事例,阐述中国传统工艺的创新方法。
  • 服务的流程是
  • 贯彻落实“安全第一,预防为主”方针的主要手段是
  • 项目可行性研究之后,要撰写项目建议书。
  • blood type
  • 中国共产党第一次明确提出反帝反封建民主革命纲领的会议是( )。
  • 素混凝土结构的混凝土强度等级不应低于
  • 昼から天気が_____なりました。

推荐文章

友情链接