求解下列方程组:
{x1-2x2+2x3+5x4=-3
{-x1+2x2-x3-x4=1
{2x1-4x2+2x3+2x4=-2
{3x1-6x2+6x3+15x4=-9
【正确答案】:对增广矩阵作初等行变换 (A,β)= (1  -2  2  5 ┆ -3 -1   2 -1 -1 ┆ 1  2  -4  2  2 ┆ -2  3  -6  6  15┆ -9) → (1  -2  2  5 ┆  -3  0  0   1  4 ┆  -2  0  0  -2 -8 ┆  4  0  0   0  0 ┆  0) → (1  -2  2  5 ┆ -3  0  0   1  4 ┆ -2  0  0   0  0 ┆  0  0  0   0  0 ┆  0) → (1  -2  0  -3 ┆  1  0   0  1   4 ┆ -2  0   0  0   0 ┆  0  0   0  0   0 ┆  0)  由于系数矩阵的秩和增广矩阵的秩均为2,故方程组有解,同解方程组为 { x1=2x2+3x4+1 {x3=-4x4-2 令自由未知量x2=x4=0,得方程组的一个特解 η*= (1  0 -2  0) 方程组导出组的同解方程组为 {x1=2x2+3x4 {x3=-4x4 设自由未知量x,x分别取值 (x2  x4) = (1  0) 得导出组的基础解系 ξ1= (2  1  0  0), ξ2= (3    0 -4  1) 故方程组的通解为 (1  0 -2  0) +c1 (2  1  0  0)k +c2  (3  0 -4  1) (c1,c2为任意常数).
                    
                    求解下列方程组:{x1-2x2+2x3+5x4=-3{-x1+2x2-x3-x4=1{2x1-4x2+2x3+2x4=-2{3x
- 2024-08-15 18:44:29
- 线性代数(02198)
