用高斯消元法解方程组
{x1+3x2+5x3-4x4=1
{x1+3x2+2x3-2x4+x5=-1
{x1-2x2+x3-x4-x5=3
{x1-4x2+x3+x4-x5=3
{x1+2x2+x3-x4+x5=-1
【正确答案】:对它的增广矩阵作初等行变换,把它化成阶梯形. (A,β)= (1  3  5  -4  0  ┆ 1  1  3  2  -2  1  ┆ -1  1 -2  1  -1 -1  ┆ 3  1 -4  1   1 -1  ┆ 3  1  2  1  -1  1  ┆ -1)   →   (1  3   5  -4  0  ┆ 1  0  0  -3   2  1  ┆ -2  0  -5 -4   3 -1  ┆ 2  0  -7 -4   5 -1  ┆ 2  0  -1 -4   3  1  ┆ -2) → (1  3  5  -4  0 ┆  1  0 -1 -4   3  1 ┆ -2  0 -5 -4   3 -1 ┆  2  0 -7 -4   5 -1 ┆  2)   0  0 -3   2  1 ┆ -2) → (1  3  5  -4  0  ┆  1  0 -1 -4   3  1  ┆ -2  0  0  16 -12 -6 ┆ 12  0  0  24 -16 -8 ┆ 16  0  0  -3  2  1  ┆ -2) → (1  3   5  -4   0  ┆  1  0 -1  -4   3   1  ┆ -2  0  0   8  -6  -3  ┆  6  0  0   3  -2  -1  ┆  2  0  0  -3   2   1  ┆ -2) → (1  3   5  -4  0 ┆  1  0 -1  -4   3  1 ┆ -2  0  0  -1   0  0 ┆  0  0  0   3  -2 -1 ┆  2  0  0  0   0   0 ┆  0) → (1  3  5  -4  0 ┆ 1    0 -1 -4   3  1 ┆ -2   0  0  1   0  0 ┆ 0  0  0  0   2  1 ┆ -2  0  0  0   0  0 ┆ 0) 即得同解方程组 {x1+3x2+5x3-4x4  =1 {-x2-4x3+3x4+x5=-2 {    x3     =0 {      2x4+x5=-2 以x5为自由未知量,逐次解之,得 {x1=-(1/2)x5 {x2=-1-(1/2)x5 {x3=0, {x4=-1-(1/2)x5 故方程组的一般解为x1=-(1/2)c,x2=-1-(1/2)c,x3=0,x4=-1-(1/2)c,x5=c(c为任意常数).
                    
                    用高斯消元法解方程组{x1+3x2+5x3-4x4=1{x1+3x2+2x3-2x4+x5=-1{x1-2x2+x3-x4-x5
- 2024-08-15 18:44:33
- 线性代数(02198)
