设二维随机变量(X,Y)服从二维正态分布,其概率密度为
f(x,y)=1/(50π)e-(x2+y2)/50
证明X与Y相互独立.
【正确答案】:证明:fX(x)
=∫+∞-∞f(x,y)dy
=∫+∞-∞1/(50π)e-(x2+y2)/50dy
=1/(50π)∫+∞-∞e-y2/50dy
=1/[5√(2π)]e-x2/50
fY(y)
=∫+∞-∞f(x,y)dx
=∫+∞-∞1/(50π)e-(x2+y2)/50dx
=1/(50π)e-(y2)/50∫+∞-∞e-(x2/50)dx
=1/[5√(2π)]e-y2/50
∴f(x,y)=fX(x)•fY(y)
∴X与Y相互独立.
设二维随机变量(X,Y)服从二维正态分布,其概率密度为 f(x,y)=1/(50π)e-(x2+y2)/50 证明X与Y相互独立
- 2024-11-07 16:23:12
- 概率论与数理统计(工)(13174)