求下列不定积分:
(1)∫[(1+2x)/(x2+x)]dx;
(2)∫[(x+3)/(x2+2x+5)]dx
【正确答案】:(1)∫[(1+2x)/(x2+x)]dx=∫[(1+x+x)/x(x+1)]dx
=∫[1/x/1/(x+1)]dx
=ln|x|+In|x+1|+C
=ln|x2+x|+C
(2)∫[(x+3)/(x2+2x+5)]dx=∫{[(x+1)+2]/[(x+1)2+4]}dx
=∫(x+1)/[(x+1)2+4]dx+∫2/[(x+1)2+4]dx
=1/2∫ 1/[(x+1)2+4]d[(x+1)2+4]+∫1/1+[(x+1)/2]2d(x+1)/2
=1/2ln[(x+1)2+4]+arctan[(x+1)/2]+C.
求下列不定积分: (1)∫[(1+2x)/(x2+x)]dx; (2)∫[(x+3)/(x2+2x+5)]dx
- 2024-11-07 09:12:58
- 高等数学(经管类)(13125)