利用对数求导法求下列函数的导数:
(1)y=(x-1)(x-2)2(x-3)3;
(2)y=xsinx
【正确答案】:(1)因为y=(x-1)(x-2)2(x-3)3,所以
lny=ln(x-1)+2ln(x-2)+3ln(x-3),
两端关于变量z求导,得
(1/y)(dy/dx)=1/(x-1)+2/(x-2)+3/(x-3)
dy/dx=(x-1)(x-2)2(x-3)3[1/(x+1)+2/(x-2)+3/(x-3)]
(2)因为y=xsinx,所以
lny=sinxlnx,
两端关于变量x求导,得
(1/y)(dy/dx)=cosxlnx+sinx/x
dy/dx=(cosxlnx+sinx/x)y
=xsinx(cosxlnx+sinx/x)
利用对数求导法求下列函数的导数: (1)y=(x-1)(x-2)2(x-3)3; (2)y=xsinx
- 2024-11-07 09:10:44
- 高等数学(经管类)(13125)