设y=(x-1)3√[(3x+1)2•(x-2)],求y′.
【正确答案】:函数两端取对数,得ln y=ln(x-1)+(2/3)ln(3x+1)+(1/3)ln(x-2),
上式两端对x求导,得1/y•y′=1/(x-1)+(2/3)•[3/(3x+2)] +(1/3)•[1/(x-2)],
y′=(x-1)3√[(3x+1)2(x-2)][1/(x-1)+2/(3x+1)+1/3(x-2)].
设y=(x-1)3√[(3x+1)2•(x-2)],求y′.
- 2024-11-07 09:10:30
- 高等数学(经管类)(13125)