求解下列方程组:
{x1-2x2+2x3+5x4=-3
{-x1+2x2-x3-x4=1
{2x1-4x2+2x3+2x4=-2
{3x1-6x2+6x3+15x4=-9
【正确答案】:对增广矩阵作初等行变换
(A,β)=
(1 -2 2 5 ┆ -3
-1 2 -1 -1 ┆ 1
2 -4 2 2 ┆ -2
3 -6 6 15┆ -9)
→
(1 -2 2 5 ┆ -3
0 0 1 4 ┆ -2
0 0 -2 -8 ┆ 4
0 0 0 0 ┆ 0)
→
(1 -2 2 5 ┆ -3
0 0 1 4 ┆ -2
0 0 0 0 ┆ 0
0 0 0 0 ┆ 0)
→
(1 -2 0 -3 ┆ 1
0 0 1 4 ┆ -2
0 0 0 0 ┆ 0
0 0 0 0 ┆ 0)
由于系数矩阵的秩和增广矩阵的秩均为2,故方程组有解,同解方程组为
{ x1=2x2+3x4+1
{x3=-4x4-2
令自由未知量x2=x4=0,得方程组的一个特解
η*=
(1
0
-2
0)
方程组导出组的同解方程组为
{x1=2x2+3x4
{x3=-4x4
设自由未知量x,x分别取值
(x2
x4)
=
(1
0)
得导出组的基础解系
ξ1=
(2
1
0
0),
ξ2=
(3
0
-4
1)
故方程组的通解为
(1
0
-2
0)
+c1
(2
1
0
0)k
+c2
(3
0
-4
1)
(c1,c2为任意常数).
求解下列方程组: {x1-2x2+2x3+5x4=-3 {-x1+2x2-x3-x4=1 {2x1-4x2+2x3+2x4=-2
- 2024-11-07 03:14:34
- 线性代数(工)(13175)