用高斯消元法解方程组
{x1+3x2+5x3-4x4=1
{x1+3x2+2x3-2x4+x5=-1
{x1-2x2+x3-x4-x5=3
{x1-4x2+x3+x4-x5=3
{x1+2x2+x3-x4+x5=-1
【正确答案】:对它的增广矩阵作初等行变换,把它化成阶梯形.
(A,β)=
(1 3 5 -4 0 ┆ 1
1 3 2 -2 1 ┆ -1
1 -2 1 -1 -1 ┆ 3
1 -4 1 1 -1 ┆ 3
1 2 1 -1 1 ┆ -1)
→
(1 3 5 -4 0 ┆ 1
0 0 -3 2 1 ┆ -2
0 -5 -4 3 -1 ┆ 2
0 -7 -4 5 -1 ┆ 2
0 -1 -4 3 1 ┆ -2)
→
(1 3 5 -4 0 ┆ 1
0 -1 -4 3 1 ┆ -2
0 -5 -4 3 -1 ┆ 2
0 -7 -4 5 -1 ┆ 2)
0 0 -3 2 1 ┆ -2)
→
(1 3 5 -4 0 ┆ 1
0 -1 -4 3 1 ┆ -2
0 0 16 -12 -6 ┆ 12
0 0 24 -16 -8 ┆ 16
0 0 -3 2 1 ┆ -2)
→
(1 3 5 -4 0 ┆ 1
0 -1 -4 3 1 ┆ -2
0 0 8 -6 -3 ┆ 6
0 0 3 -2 -1 ┆ 2
0 0 -3 2 1 ┆ -2)
→
(1 3 5 -4 0 ┆ 1
0 -1 -4 3 1 ┆ -2
0 0 -1 0 0 ┆ 0
0 0 3 -2 -1 ┆ 2
0 0 0 0 0 ┆ 0)
→
(1 3 5 -4 0 ┆ 1
0 -1 -4 3 1 ┆ -2
0 0 1 0 0 ┆ 0
0 0 0 2 1 ┆ -2
0 0 0 0 0 ┆ 0)
即得同解方程组
{x1+3x2+5x3-4x4 =1
{-x2-4x3+3x4+x5=-2
{ x3 =0
{ 2x4+x5=-2
以x5为自由未知量,逐次解之,得
{x1=-(1/2)x5
{x2=-1-(1/2)x5
{x3=0,
{x4=-1-(1/2)x5
故方程组的一般解为x1=-(1/2)c,x2=-1-(1/2)c,x3=0,x4=-1-(1/2)c,x5=c(c为任意常数).
用高斯消元法解方程组 {x1+3x2+5x3-4x4=1 {x1+3x2+2x3-2x4+x5=-1 {x1-2x2+x3-x4
- 2024-11-07 03:14:33
- 线性代数(工)(13175)