设二维随机变量(X,Y)的分布函数为F(x,y)=a(b+ arctan x)(c+arctan 2y),-∞<x<+

设二维随机变量(X,Y)的分布函数为F(x,y)=a(b+ arctan x)(c+arctan 2y),-∞<x<+∞,- ∞<y<+∞.求:(1)常数a,b,c;(2)(X,Y)的概率密度.
【正确答案】:(1)因为(X<+∞,Y<+∞)是必然事件,所以F(+∞,+∞)=P(X<+∞,Y<+∞)=1,X<-∞与Y<-∞都是不可能事件,所以F(-∞,y)=P(X<-∞,Y≤y)=0,F(x,-∞)=P(X≤x,Y<-∞)=0,F(-∞,-∞)=P(X<-∞,Y<-∞)=0. F(+∞,+∞)=α(b+π/2)(c+π/2)=1,F(x,-∞)=α(b+arctan x) (c-π/2)=0,F(-∞,y)=α(b-π/2)(c+arctan 2y)=0.从上面第二式得c=π/2,从上面第三式得b=π/2,再从上面第一式得α=1/π2. (2)(X,Y)的分布函数为F(x,y)=1/π2(π/2+arctan x)(π/2+arctan 2y),从而概率密度为f(x,y)=a2F(x,y)/axay=2/π2(1+x2)(1+4y2. 点拨:F(+∞,+∞)=P{X<+∞,Y<+∞}=1.