设随机变量X1、X2的概率密度分别如下:
fX1(x)=
{2e-2x,x﹥0;
0,x≤0
fX2(x)=
{4e-4x,x﹥0;
0,x≤0
求E(X1+X>0),E(2X1-3X22).
【正确答案】:解:E(X1+X2)=E(X1)+E(X2)
=∫+∞-∞xfX1(x)dx+∫+∞-∞xfX2(x)dx
=∫+∞0x•2e-2xdx+∫+∞0x•4e-4xdx=1/2+1/4=3/4.
E(2X1-322)=2E(X1)-3E(X22)=2×(1/2)-3∫+∞0x2•4e-4xdx=1-3/8=5/8.
设随机变量X1、X2的概率密度分别如下: fX1(x)= {2e-2x,x﹥0; 0,x≤0 fX2(x)= {4e-4x,x﹥
- 2024-11-07 16:24:31
- 概率论与数理统计(工)(13174)