证明D(X-Y)=D(X)+D(Y)-2Cov(X,Y).
【正确答案】:证明:D(X-Y)=E[X-Y-E(X-Y)] 2
=E[(X-E(X))-(y-E(y))] 2
=E[(X-E(X))2]+E[(Y-E(Y))2]-2E[X-E(X)]•E[Y-E(Y)]
=D(X)+D(Y)-2Cov(X,Y)
证明D(X-Y)=D(X)+D(Y)-2Cov(X,Y).
- 2024-11-07 16:24:10
- 概率论与数理统计(工)(13174)
- 1