设随机变量X的概率密度为
f(x)=
{x,0≤x﹤1;
2-x,1≤x﹤2;
0,其他.
求:(1)E(X),D(X);
(2)E(Xn),其中n为正整数.
【正确答案】:f(x)=
{x, 0≤x﹤1;
2-x,1≤x﹤2;
0, 其他.
(1)E(X)=∫+∞-∞xf(x)dx=∫10x•xdx+∫21x•(2-x)dx=1/3+2/3=1;
E(X2)=∫+∞-∞x2f(x)dx
=∫10x2•xdx+∫21x2•(2-x)dx
=1/4+2/3+1/4=7/6
D(X)=E(x2)-(Ex)2=7/6-12=1/6
(2)E(Xn)=∫+∞-∞xnf(x)dx
=∫10xn•xdx+∫21xn(2-x)dx
=1/(n+1)+[2/(n+1)](2n+1-1)+[1/(n+2)](1-2n+2)
=(2n+2-2)/(n+1)+(2-2n+2)/(n+2)
=(2n+2-2)/[(n+1)(n+2)]
设随机变量X的概率密度为 f(x)= {x,0≤x﹤1; 2-x,1≤x﹤2; 0,其他. 求:(1)E(X),D(X); (2
- 2024-11-07 16:24:09
- 概率论与数理统计(工)(13174)