已知二维随机变量(X,Y)的联合概率密度
f(x,y)=
{Cxy,0≤x﹤≤1,0≤y≤1;
0,其他
求:(1)常数C;
(2)(X,Y)的联合分布函数;
(3)P(X﹤Y).
【正确答案】:(1)由(X,Y)的联合概率密度的性质,有
∫+∞-∞∫+∞-∞f(x,y)dxdy
=C∫10∫10xydxdy=C/4=1,
所以C=4.
(2)当x﹤0或y﹤0时,
F(x,y)=p(X≤x,Y≤y)=0;
当0≤x﹤1,0≤y﹤1时,
F(x,y)=∫x-∞∫y-∞(u,υ)dudυ
=4∫x0udu∫y0υdυ
=x2y2;
当0≤x<1,y≥1时,
F(x,y)=P(X≤x,Y≤y)=4∫x0udu∫y0υdυ=x2;
当x≥1,0≤Y<1时,
F(x,y)=P(X≤x,Y≤y)=4∫10udu∫y0υdυ=y2;
当x≥1,y≥1时,
F(x,y)=P(X≤x,Y≤y)=4∫10udu∫10υdυ=1;
所以(X.Y)的分布函数
F(x,y)=
{0, x﹤0<或y﹤0;
x2y2, 0≤x﹤1,0≤y﹤1;
x2,0≤x﹤1,y≥1;
y2, x≥1,0≤y≤1;
1, x≥1, y≥1.
(3)P(x﹤y)=∫∫x﹤yf(x,y)dxdy
=∫∫0≤x﹤y﹤14xydxdy
=4∫10ydy∫y0xdx
=1/2
已知二维随机变量(X,Y)的联合概率密度 f(x,y)= {Cxy,0≤x﹤≤1,0≤y≤1; 0,其他 求:(1)常数C; (
- 2024-11-07 16:23:31
- 概率论与数理统计(工)(13174)