设二维随机变量(X,Y)的概率密度
f(x,y)=
{ax2+2xy2,0≤x≤1,0≤y≤1;
0,其他
试求:
(1)常数a;
(2)分布函数F(x,y);
(3)边缘概率密度fX(x),fY(y);
【正确答案】:(1)由(X,Y)概率密度的性质,有
∫+∞-∞∫+∞-∞f(x,y)dxdy
=∫10∫10(ax2+2xy2)dxdy=(1/3)a+1/3=1
所以a=2.
(2)由分布函数F(x,y)的定义,
当x﹤0或Y﹤0时,
F(x,y)=e(X≤x,Y≤y)=0;
当0≤x﹤1,0≤y≤1时,
F(x,y)=∫x-∞∫y-∞f(u,υ)dudυ
=∫x0∫y0(2u2+2uυ2)dudυ
=(2x3+x2+y3)/3;
当0≤x﹤1,或y≥1时,
F(x,y)=∫x-∞∫y-∞f(u,υ)dudυ=
∫x0∫10(2u2+2uυ2)dudυ
=(2x3+x2)/3
当x≥1,0≤y﹤l时,
F(x,y,)=∫x-∞∫y-∞f(u,υ)dudυ=
∫10∫y0(2u2+2uυ2)dudυ
=(2y+y3)/3
当x≥1,y≥1时,
F(x,y)=∫x-∞∫y-∞f(u,υ)dudυ
=∫10∫10(2u2+2uυ2)dudυ=1
因为,(X,Y)的分布函数
F(x,y)=
{0, x﹤0或y﹤0;
2x3+x2y3)/3,0≤x﹤1,0≤y﹤1;
(2x3+x2)/3,0≤x≤1,y≥1;
2y+y3)/3,x≥1,0≤y﹤1;
1, x≥1,y≥1;
(3)fX(x)=∫+∞-∞f(x,y)dy=
{∫10(2x2+xy2)dy,0≤x≤1;
0, 其他.
=
{2x2+(2/3)x,0≤x≤1;
0, 其他.
类似可得fY(y)=
{2/3+y2,0≤y≤1;
0. 其他.
设二维随机变量(X,Y)的概率密度 f(x,y)= {ax2+2xy2,0≤x≤1,0≤y≤1; 0,其他 试求: (1)常数a
- 2024-11-07 16:23:02
- 概率论与数理统计(工)(13174)
- 1