随机变量(X,Y)的概率密度
f(x,y)=
{A[R-√(x2+y2)],x2+y2≤R2;
0,其他
求:(1)系数A;
(2)(X,Y)落入圆x2+y2=r22(r﹤R)内的概率.
【正确答案】:(1)∫+∞-∞∫+∞-∞f(x,y)dxdy
=A∫∫x2+y2≤R2[R-√(x2+y2)]dxdy
=A∫∫p≤R(R-p)pdpdθ
=A∫2π0dθ∫R0(Rp-p2)dp
=A(πR3/3)=1,
故A=3/πR3.
(2)设D为圆域x2+y2﹤r2,则P((X,Y)∈D)=∫∫(3/πR3)(R-p)pdpdθ
=3/πR3∫2π0dθ∫x0(Rp-p2)dp=(3r2/R2)(1-2r/3R)
随机变量(X,Y)的概率密度 f(x,y)= {A[R-√(x2+y2)],x2+y2≤R2; 0,其他 求:(1)系数A; (
- 2024-11-07 16:22:58
- 概率论与数理统计(工)(13174)