随机变量(X,Y)的概率密度 f(x,y)= {A[R-√(x2+y2)],x2+y2≤R2; 0,其他 求:(1)系数A; (

随机变量(X,Y)的概率密度
f(x,y)=
{A[R-√(x2+y2)],x2+y2≤R2;
0,其他
求:(1)系数A;
(2)(X,Y)落入圆x2+y2=r22(r﹤R)内的概率.
【正确答案】:(1)∫+∞-∞+∞-∞f(x,y)dxdy =A∫∫x2+y2≤R2[R-√(x2+y2)]dxdy =A∫∫p≤R(R-p)pdpdθ =A∫0dθ∫R0(Rp-p2)dp =A(πR3/3)=1, 故A=3/πR3. (2)设D为圆域x2+y2﹤r2,则P((X,Y)∈D)=∫∫(3/πR3)(R-p)pdpdθ =3/πR30dθ∫x0(Rp-p2)dp=(3r2/R2)(1-2r/3R)