设X~N(3,22),求:
(1)P{2<X≤5},P{-4﹤X≤10},P{∣X∣﹥2},P{X﹥3};
(2)常数c,使P{X﹥C}=P{X≤c}.
【正确答案】:(1)∵X~N(3,22)
∴P{2﹤X≤5} =P{(2-3)/2﹤(X-3)/2≤(5-3)/2)
=Φ(1)-Φ(-0.5)
=Φ(1)+Φ(0.5)-1=0.5328
P{-4﹤X≤10}=P{(-4-3)/2﹤(X-3)/2<≤(10-3)/2}
=Φ(3.5)-Φ(-3.5)
=2Φ(3.5)-1=0.9996
P{∣X∣﹥2}=1-P{∣X∣≤2}=1-P{-2≤X≤2}
=1-P{-2-3/2≤x-3/2≤(2-3)/2}
=1-[Φ(-0.5)-Φ(-2.5)]
=Φ(0.5)+1-Φ(2.5)=0.6977
P{X﹥3} =1-P{ X≤3}=1-P{(X-3)/2≤(3-3)/2}
=1-Φ(0)=0.5
(2)∵P{X﹥c}=P{X≤c}
∴1-P{X≤c}=P{X≤c}
∴P{X≤c}=1/2
∴P{(X-2)/2≤(c-3)/2}=Φ[(c-3)/2]=1/2=Φ(0)
∴(c-3)/2=0
∴c=3
设X~N(3,22),求: (1)P{2<X≤5},P{-4﹤X≤10},P{∣X∣﹥2},P{X﹥3}; (2)常数c,
- 2024-11-07 16:22:11
- 概率论与数理统计(工)(13174)