求下列不定积分:
(1)∫[(x/√(x2+1)-x√(x2+1)]dx
(2)∫dx/xlnx;
(3)∫exdx/√(1-e2x);
(4)∫1/1+x2earctanxdx.
【正确答案】:(1)∫[x/√(x2+1)-x√(x2+1)]dx
=1/2∫[1/√(x2+1)]d(x2+1)-(1/2)∫√(x2+1)d(x2+1)
=√(x2+1)-(1/2)×(2/3)(x3+1)3/2+C
=√(x2+1)-(1/3)(x2+1)3/2+C
(2)∫dx/xlnx=∫(1/lnx)d(lnx)
=In|lnx|+C.
(3)∫exdx/√1-e2x
=∫1/√1-e2xdex
=arcsinex+C.
(4)∫1/1+x2earctanxdx
=∫earctanxdarctanx
=earctanx+C
求下列不定积分: (1)∫[(x/√(x2+1)-x√(x2+1)]dx (2)∫dx/xlnx; (3)∫exdx/√(1-e
- 2024-11-07 09:14:02
- 高等数学(经管类)(13125)