求不定积分:
∫arcsinx/(1-x2)3/2dx
【正确答案】:令arcsinx=t,x=sint,dx=costdt,则
∫arcsinx/(1-x2)3/2dx=∫t/cos3·costdt
=∫tsec2tdt=∫tdtant
=ttant-∫tan=tdt
=ttant+∫1/costdcost
=ttant+lncost+C
=tsint/√(1-sin2t)+ln√(1-sin2t)+C
=xarcsinx/√(1-x2)+ln√(1-x2)+C
求不定积分: ∫arcsinx/(1-x2)3/2dx
- 2024-11-07 09:12:12
- 高等数学(经管类)(13125)