试确定函数y=2x+8/x的单调性.
【正确答案】:当x=0时,函数无定义,故函数在x=0处不可导,
当x≠0时,导函数为y′=2-8/x2=(2x2-8)/x2=
[2(x+2)(x-2)]/x2,
令y′=0,得x=±2.于是,点x=-2,0,2将函数定义域(x≠0)划分成四个区间(-∞,-2),(-2,0),(0,2),(2,+∞),函数在这四个区间上的单调性如下:
在(-∞,-2)上,y′﹥0,函数y单增;
在(-2,0)上,y′﹤0,函数y单减;
在(0,2)上,y′﹤0,函数y单减;
在(2,+∞)上,y′﹥0,函数y单增.
试确定函数y=2x+8/x的单调性.
- 2024-11-07 09:11:32
- 高等数学(经管类)(13125)