已知f′(x)=1/x,y=f[(x+1)/(x-1)],求dy/dx.
【正确答案】:y′=f′[(x+1)/(x-1)]•[(x-1)-(x+1)]/(x-1)2=[-2/(x-1)2]f′[(x+1)/(x-1)],
又因为f′(x)=1/x,所以f′(x+1)/(x-)=(x-1)/(x+1),故
dy/dx=-2/(x-1)2•(x-1)/(x+1)=-2/(x2-1)
已知f′(x)=1/x,y=f[(x+1)/(x-1)],求dy/dx.
- 2024-11-07 09:10:32
- 高等数学(经管类)(13125)