已知xy+lnx+lny=1,求dy/dx,d2y/dx2.
【正确答案】:xy+lnx+1ny=1,求dy/dx,d2y/dx2,移项,等式成为xy+lnx+lny-1=0.令F(x,y)=xy+lnx+lny-1,则有dy/dx=-[(∂F/∂x)/(∂F/∂y)=-(y+1/x)/(x/1/y)=-(y/x),d2y/dx2=(d/dx)[-(y/x)]=-[(dy/dx)x-y]/x2=-[-(y/x)x-y]/x2=2y/x2
已知xy+lnx+lny=1,求dy/dx,d2y/dx2.
- 2024-11-07 09:09:19
- 高等数学(经管类)(13125)