设区域D:x2+y2≤a2(a>0),求a的值,
使∫∫D2-x2-y2)dxdy=π.
【正确答案】:令x=rcosθ,y=rsinθ,
∫∫D√(a2-x2-y2)dxdy=
∫02πdθ∫0a√(a2-r2)rdr
=2π∫0a√(a2-r2)[-(1/2)]d(a2-r2)
=-(2/3)π(a2-r2)3/2∣0a
=2a3π/3=π,
∴a=3√(3/2)
设区域D:x2+y2≤a2(a>0),求a的值, 使∫∫D
- 2024-11-07 09:08:57
- 高等数学(经管类)(13125)