设f(x)=
{(x+1)2,x≤0,
{x+4,x>0,
g(x)=x2-4,求f[g(x)].
【正确答案】:当x2-4≤0,即-2≤x≤2时,
f[g(x)]=f(x2-4)=(x2-4+1)2=(x2-3)2;
当x2-4>0,即x>2或x<-2时,
f[g(x)]=f(x2-4)=x2-4+4=x2,
故f[g(x)]=
{(x2-3)2, -2≤x≤2,
{x2, x>2或x<-2.
设f(x)= {(x+1)2,x≤0, {x+4,x>0, g(x)=x2-4,求f[g(x)].
- 2024-11-07 09:07:20
- 高等数学(经管类)(13125)