求
{x1+x2-x3+2x4+x5=0
{x3+3x4-x5=0的通解.
{2x3+x4-2x5=0
【正确答案】:A=
(1 1 -1 2 1
0 0 1 3 -1
0 0 2 1 -2)
→
(1 1 0 5 0
0 0 1 3 -1
0 0 0 -5 0)
→
(1 1 0 5 0
0 0 1 3 -1
0 0 0 1 0)
→
(1 1 0 0 0
0 0 1 0 -1
0 0 0 1 0)
同解方程组为
{x1+x2=0
{x3-x5=0,
{x4=0
即
{x1=-x2
{x3=x5
{x4=0
令x2,x5为自由未知量,分别取
(x2
x5)
=
(1
0),
(0
1),
可得基础解系
ξ1=
(-1
1
0
0
0),
ξ2=
(0
0
1
0
1)
于是,线性方程组的通解为k1ξ1+k2ξ2(k1,k2为任意实数).
求 {x1+x2-x3+2x4+x5=0 {x3+3x4-x5=0的通解. {2x3+x4-2x5=0
- 2024-11-07 03:14:17
- 线性代数(工)(13175)