求解线性方程组
{2x1-x2+3x3+2x4=0
{9x1-x2+14x3+2x4=1
{3x1+2x2+5x3-4x4=1
{4x1+5x2+7x3-10x4=2
【正确答案】:对方程组的增广矩阵作初等行变换 (A,β)= (2 -1  3   2 ┆ 0  9 -1  14  2 ┆ 1  3  2  5  -4 ┆ 1  4  5  7  -10┆ 2) → (-1  -3  -2  6 ┆ -1  9   -1  14  2 ┆  1  3   2   5  -4 ┆  1   4   5   7 -10 ┆  2) → (-1  -3  -2  6  ┆ -1  0  -28  -4  56 ┆ -8  0   -7  -1  14 ┆ -2  0   -7  -1  14 ┆ -2) → (1  3  2  -6  ┆ 1  0  7  1  -14 ┆ 2  0  0  0  0   ┆ 0  0  0  0  0   ┆ 0) → (1  0  11/7  0 ┆  1/7  0  1  -2   -2 ┆  2/7  0  0  0   0   ┆  0  0  0  0   0   ┆  0) 系数矩阵和增广矩阵的秩均为2,所以方程组有无穷多个解,同解方程组为 {x1=-(11/7)x3+1/7 {x2=-(7/11)x3+2x4+2/7 令自由未知量x3=x4=0,得方程组的一个特解 η*= (1/7  2/7   0   0) 方程组的导出组的同解方程组为 {x1=-(11/7)x3 {x2=-(1/7)x3+2x4 设自由未知量分别取值 (x2  x4) = (7  0), (0  1), 则导出组的基础解系为 ξ1= (-11  -1   7   0), ξ2= (0  2  0  1) 故方程组的通解为 (1/7  2/7   0   0) +c1 (-11   -1    7    0) +c2 (0  2  0  1) (c1,c2为任意常数).
                    
                    求解线性方程组{2x1-x2+3x3+2x4=0{9x1-x2+14x3+2x4=1{3x1+2x2+5x3-4x4=1{4x1
- 2024-08-15 18:44:52
- 线性代数(02198)
