求不定积分:∫e√xdx

求不定积分:
∫e√xdx
【正确答案】:令√x=t,则x=t2,dx=2tdt, ∫e√xdx=∫et·2tdt =2∫tdet =2(tet-∫etdt) =2(tet-et)+C =2e√x(√x-1)+C