求不定积分:
∫arcsinx/(1-x2)3/2dx
【正确答案】:令arcsinx=t,x=sint,dx=costdt,则 ∫arcsinx/(1-x2)3/2dx=∫t/cos3·costdt =∫tsec2tdt=∫tdtant =ttant-∫tan=tdt =ttant+∫1/costdcost =ttant+lncost+C =tsint/√(1-sin2t)+ln√(1-sin2t)+C =xarcsinx/√(1-x2)+ln√(1-x2)+C
求不定积分:∫arcsinx/(1-x2)3/2dx
- 2024-07-20 16:00:48
- 高等数学(一)(00020)