设随机变量X的分布函数F(x)=
{1-a3/x3,x≥a;
0,x﹤a.
其中a﹥0,求E(X).
【正确答案】:显然F(x)为连续随机变量的分布函数。所以X的概率密度. f(x)= {3a3/x4,x﹥a; 0, x≤a. 从而有 E(X)=∫+∞-∞xf(x)dx=∫+∞ax•(3a3/x4)dx=3a3∫+∞0 (1/x3)dx=3a3•(1/2a2)=(3/2)a
设随机变量X的分布函数F(x)={1-a3/x3,x≥a;0,x﹤a.其中a﹥0,求E(X).
- 2024-08-03 21:50:32
- 概率论与数理统计(二)(02197)