
求二维随机变量(X,Y)的联合分布律
【正确答案】:

【题目解析】:注意本题求联合分布律:XY相互独立,故:(1)P{X=-3,Y=1}=P{X=-3}×P{Y=1}=0.25×0.4=0.1(2)P{X=-3,Y=2}=P{X=-3}×P{Y=2}=0.25×0.2=0.05(3)P{X=-3,Y=3}=P{X=-3}×P{Y=3}=0.25×0.4=0.1(4)P{X=-2,Y=1}=P{X=-2}×P{Y=1}=0.25×0.4=0.1(5)P{X=-2,Y=2}=P{X=-2}×P{Y=2}=0.25×0.2=0.05(6)P{X=-2,Y=3}=P{X=-2}×P{Y=3}=0.25×0.4=0.1(7)P{X=-1,Y=1}=P{X=-1}×P{Y=1}=0.5×0.4=0.2(8)P{X=-1,Y=2}=P{X=-1}×P{Y=2}=0.5×0.2=0.1(9)P{X=-1,Y=3}=P{X=-1}×P{Y=3}=0.5×0.4=0.2列出分布律如答案所示。