设X,Y互相独立,且X,Y的分布律分别为
X012X-1123
P1/42/41/4P1/45/121/41/12
求:(1)(X,Y)的分布律;(2)Z=XY的分布律.
【正确答案】:(1)
P{X=0,Y=-1}=P{X=0}•P{Y=-1} =1/4×(1/4)=1/16
P{X=0,Y=1}=P {X=0 }•P{Y=1} =1/4×(5/12)=5/48
P{X=0,Y=2}=P {X=0 }•P {Y=2} =(1/4)×(1/4)=1/16
P{X=0, Y=3}=P{ X=0} •P{Y=3} =1/4×(1/12)=1/48
P{X=1,Y=-1}=P{X=1}• P={Y=-1}=2/4×(1/4)=1/8
P{X-=1,Y=1}=P {X=1}•P{Y=1} =2/4×(5/12)=5/24
P{X=1,Y=2}=P{ X=1}•P{Y=2}=2/4×(1/4)=1/8
P{X=1,Y=3}=P{X=1} •P{Y=3}=2/4×(1/12)=1/24
P{X=2,Y=-1}=P{X=2}•P{ Y=-1}=1/4×(1/4)=1/16
P{X=2,Y=l}=P{X=2}•P{Y=1} =1/4×(5/12)=5/48
P{X=2 ,Y=2}P={X=2}•P{X=2}=1/4×(1/4)=1/16
P{X=2,Y=3}=P{X=2} •P{Y=3}=1/4×(1/12)=1/48
∴(X,Y)的分布律为
X\Y -1 1 2 3
0 1/16 5/48 1/16 1/48
1 1/8 5/24 1/8 1/24
2 1/16 5/48 1/16 1/48
(2)Z可能的取值为-2,-1,0,1,2,3,4,6
P{Z=-2}=P{X=2,Y=-1}=P{X=2}•P{Y=-1}=1/4×(1/4)=1/16
P{Z=-1}=P{X=1,Y=-1}=P{X=1}•P{Y=-1}=2/4×(1/4)=1/8
P{Z=0}=P{Z=0,Y=-1}+P{Z=0,Y=1}+P{Z=0,Y=2}+P{Z=0,Y=3}
=1/4×(1/4)+1/4×(5/12)+(1/4)×(1/4)+1/4×(1/12)=1/4
P{Z=l}=P{X=1,Y=1}=P{X=1}•P{Y=1}=2/4×(5/12)=5/24
P={Z=2}=P{X=1,Y=2}+P{X=2}•P{Y=1} =2/4×(1/4)+1(/4)×5/12=11/48
P{Z=3}=P{X=1,Y=3}=P{X=1}•P{Y=3}=2/4×1/12=1/24
P{Z=4}=P{X=2,Y=2}=P{X=2}•P{Y=2}=1/4×1/4=1/16
P{Z=6} =P{X=2,Y=3}=P{X=2}•P{Y=3}=1/4×1/12=1/48
∴Z的分布律为
Z -2 -1 0 1 2 3 4 6
P 1-16 1/8 1/4 5/24 11/48 1/24 1/16 1/48
设X,Y互相独立,且X,Y的分布律分别为 X012X-1123 P1/42/41/4P1/45/121/41/12 求:(1)(
- 2024-11-07 16:23:17
- 概率论与数理统计(工)(13174)