求下列不定积分:
(1)∫dx/[2x+√(x+1)]
(2)∫√(ex-1)dx.
【正确答案】:(1)令√(x+1)=t,则x=t2-1,dx=2tdt,
∫dx/[2+√(x+1)]
=∫[2t/(2+t)]dt
=2∫[(t+2-2)/(2+t)]dt
=2∫[1-2/(2+t)]dt
=2[t-2ln|2+t|]+C
=2√(x+1)-4ln[2+√(x+1)]+C.
(2)令√(ex-1)=t,则x=ln(t2+1),dx=2t/(t2+1)dt
∫√(ex-1)dx
=∫[t•2t/(t2+1)]dt
=2∫[(t2+1-1)/(t2+1)]dt
=2∫[1-1/(t2+1)dt
=2(t-arctant)+C
=2[√(ex-1)-arctan√(ex-1)]+C.
求下列不定积分: (1)∫dx/[2x+√(x+1)] (2)∫√(ex-1)dx.
- 2024-11-07 09:12:46
- 高等数学(经管类)(13125)