求∫1/[x2√(4+x2)]dx
【正确答案】:设x=2tan t,则dx=2dt/cos2t,故
∫={1/[x2√(4+x2)]}dx
=∫1/(4tan2t)•[1/(2/cost)]•(2/cos2t)dt
=∫(cost/4sin2t)dt=-(1/4sint)+C
=-√(4+x2)/(4x)+C(这里已设x﹥0).
求∫1/[x2√(4+x2)]dx
- 2024-11-07 09:12:44
- 高等数学(经管类)(13125)