用分部积分法求下列不定积分:
(1)∫xsinzdx;
(2)∫xe2xdx;
(3)∫ln(x+1)dx
【正确答案】:(1)∫xsinxdx=-∫xdcosx
=-(xcosx-∫cosxdx)
=-xcosx+sinx.
(2)∫xe2xdx=1/2∫xde2x
=1/2(xe2x—∫e2xdx)
=1/2xe2x一1/4∫e2xd(2x)
=1/2xe2x-1/4e2x+C.
(3)∫ln(x+1)dx=xln(x+1)-∫x•1/(x+1)dx
=xln(x+1)-∫[(x+1-1)/(x+1)]dz
=xln(x+1)-∫[1-1/(x+1)]dx
=xln(x+1)-x+ln|x+1|+C
用分部积分法求下列不定积分: (1)∫xsinzdx; (2)∫xe2xdx; (3)∫ln(x+1)dx
- 2024-11-07 09:12:19
- 高等数学(经管类)(13125)