设y=xarcsin(x/2)+√(4-x2),求y′及y′′.
【正确答案】:y′=arcsin(x/2)+x{1/2/√[1-(x/2)2]}+(-2x)/(2√4-x2)
=arcain(x/2)+x/√(4-x2)-x/√(4-x2)=arcsin(x/2)
y′′=[arcsin(x/2)]′=(x/2)′/√[1-(x/2)2]=1/√(4-x2)
设y=xarcsin(x/2)+√(4-x2),求y′及y′′.
- 2024-11-07 09:11:15
- 高等数学(经管类)(13125)