求下列函数的导数:
(1)y=sin(2x+3);
(2)y=e1/x;
(3)y=ln[x-√(x2-1)];
(4)y=arctan(x/2);
(5)y=sin(cos1/x).
【正确答案】:(1)y'=(2x+3)' cos(2x+3)
=2cos(2x+3).
(2)y'=(1/x)'e1/x
=-1/x2e1/x
(3)y'=(x-√(x2-1))'×1/[x-√(x2-1)]
=[1-2x/2√(x2-1)][x+√(2-1)]
=[1-x/√(x2-1)][x+√(x2-1)]
=-1/√(x2-1)
(4)y'= 1/[1+(x/2)2]•(x/2)'
=4/4+x2•1/2
(5)y'=cos(cos1/x)•(cos1/x)'
=-cos(cos1/x)•sin(1/x)•(1/x)'
=1/x2cos(cos1/x)•sin(1/x).
求下列函数的导数: (1)y=sin(2x+3); (2)y=e1/x; (3)y=ln[x-√(x2-1)]; (4)y=ar
- 2024-11-07 09:10:55
- 高等数学(经管类)(13125)