设y=√(x2-1)lnx-arctan√(x2-1),求y(√5).
【正确答案】:y'=2xlnx/2√(x2-1)+√(x2-1)•1/x-1/{1+[√(x2-1)]2}•2x/[2√(x2-1)]
=xlnx/√(x2-1)+√(x2-1)/x-1/[x√(x2-1)]
y'(√5)=(√5ln√5)/2+2/√5-1/(2√5)=(√5/4)ln5+(3/10)√5
设y=√(x2-1)lnx-arctan√(x2-1),求y(√5).
- 2024-11-07 09:10:36
- 高等数学(经管类)(13125)