首页
求z=x2+3xy+y2在点(1,2)处的偏导数.
2024-11-07 09:08:50
高等数学(经管类)(13125)
求z=x
2
+3xy+y
2
在点(1,2)处的偏导数.
【正确答案】:z=x
2
+3xy+y
2
, ∂z/ ∂x=2x+3y,∂z/ ∂x∣
(1,2)
=8, ∂z/ ∂y=3x+2y,∂z/ ∂y∣
(1,2)
=3+4=7
上一篇:
求下列二元函数的定义域 (1)z=√x+y; (2)z=√(9-x2-y2)+ln(x2-y).
下一篇:
设F(u,υ)可微,且F´u≠F´υ,z(x,y)是由方程F(ax+bz,ay-bx)=0(b≠0)所确