若limx→∞[(2x2+1)/(x-1)-ax-b]=0,求a,b的值.
【正确答案】:limx→∞[(2x2+1)/(x-1)-ax-b]
=limx→∞{[2x2+1-ax(x-1)-b(x-1)]/(x-1)}
=limx→∞{[(2-a)x2+(a-b)x+b+1]/(x-1)}=0
故分子必须是零次多项式,即
{2-a=0,
a-b=0,
所以
{a=2,
b=2.
若limx→∞[(2x2+1)/(x-1)-ax-b]=0,求a,b的值.
- 2024-11-07 09:08:23
- 高等数学(经管类)(13125)