设函数y=f((x+1)/(x-1)),其中f(x)满足f'(x)=arctan√x,则dy/dx|x=2=()
A、arctan√2
B、-(2π/3)
C、2π/3
D、π/3
【正确答案】:B
【题目解析】:复合函数的求导法则.因为f'(x)=arctan√x,所以dy/dx=f'((x+1)/(x-1))•((x+1)/(x-1))'=f'((x+1)/(x-1))•[-2/(x-1)2]=-2arctan√[(x+1)/(x-1)]/(x-1)2,则dy/dx|x=2=-2arctan√3=-(2/3)π.
设函数y=f((x+1)/(x-1)),其中f(x)满足f'(x)=arctan√x,则dy/dx|x=2=()
- 2024-11-07 09:04:32
- 高等数学(经管类)(13125)