求解线性方程组
{2x1-x2+3x3+2x4=0
{9x1-x2+14x3+2x4=1
{3x1+2x2+5x3-4x4=1
{4x1+5x2+7x3-10x4=2
【正确答案】:对方程组的增广矩阵作初等行变换
(A,β)=
(2 -1 3 2 ┆ 0
9 -1 14 2 ┆ 1
3 2 5 -4 ┆ 1
4 5 7 -10┆ 2)
→
(-1 -3 -2 6 ┆ -1
9 -1 14 2 ┆ 1
3 2 5 -4 ┆ 1
4 5 7 -10 ┆ 2)
→
(-1 -3 -2 6 ┆ -1
0 -28 -4 56 ┆ -8
0 -7 -1 14 ┆ -2
0 -7 -1 14 ┆ -2)
→
(1 3 2 -6 ┆ 1
0 7 1 -14 ┆ 2
0 0 0 0 ┆ 0
0 0 0 0 ┆ 0)
→
(1 0 11/7 0 ┆ 1/7
0 1 -2 -2 ┆ 2/7
0 0 0 0 ┆ 0
0 0 0 0 ┆ 0)
系数矩阵和增广矩阵的秩均为2,所以方程组有无穷多个解,同解方程组为
{x1=-(11/7)x3+1/7
{x2=-(7/11)x3+2x4+2/7
令自由未知量x3=x4=0,得方程组的一个特解
η*=
(1/7
2/7
0
0)
方程组的导出组的同解方程组为
{x1=-(11/7)x3
{x2=-(1/7)x3+2x4
设自由未知量分别取值
(x2
x4)
=
(7
0),
(0
1),
则导出组的基础解系为
ξ1=
(-11
-1
7
0),
ξ2=
(0
2
0
1)
故方程组的通解为
(1/7
2/7
0
0)
+c1
(-11
-1
7
0)
+c2
(0
2
0
1)
(c1,c2为任意常数).
求解线性方程组 {2x1-x2+3x3+2x4=0 {9x1-x2+14x3+2x4=1 {3x1+2x2+5x3-4x4=1
- 2024-11-07 03:14:25
- 线性代数(工)(13175)
- 1