α,b取何值时,方程组
{x1+2x2=3
{4x1+7x2+x3=10
{x2-x3=b
{2x1+3x2+αx3=4
无解、有唯一解、有无穷多个解.
【正确答案】:增广矩阵(A,β)=
(1 2 0 ┆ 3
4 7 1 ┆ 10
0 1 -1 ┆ b
2 3 α ┆ 4)
→
(1 2 0 ┆ 3
0 -1 1 ┆ -2
0 1 1 ┆ 6
0 -1 α ┆ -2)
→
(1 2 0 ┆ 3
0 -1 1 ┆ -2
0 0 0 ┆ b-2
0 0 α-1 ┆ 0)
→
(1 2 0 ┆ 3
0 -1 1 ┆ -2
0 0 α-1 ┆ 0
0 0 0 ┆ b-2)
b≠2时方程组无解,b=2时方程组有解.
(1)b=2,α≠1时,r(A)=r(A,β)=3,方程组有唯一解.
(A,β)→
(1 0 0 ┆ -1
0 -1 0 ┆ -2
0 0 1 ┆ 0
0 0 0 ┆ 0)
→
(1 0 0 ┆ -1
0 1 0 ┆ 2
0 0 1 ┆ 0
0 0 0 ┆ 0)
所以x1=-1,x2=2,x3=0,即其唯一解为ξ=(-1,2,0)T.
(2)b=2,α=1时,r(A)=r(A,β)=2<3,方程组有无穷多个解.
(A,β)→
(1 2 0 ┆ 3
0 1 1 ┆ 1-2
0 0 0 ┆ 0
0 0 0 ┆ 0)
→
(1 0 2 ┆ -1
0 1 -1 ┆ 2
0 0 0 ┆ 0
0 0 0 ┆ 0),
令x为自由未知量,取x3=0,得原方程组的一个特解ξ*=(-1,2,0)T,其导出组的基础解
系为ξ1=(-2,1,1)T,所以原方程组的通解为ξ=ξ*+kξ1(k为任意常数).
α,b取何值时,方程组 {x1+2x2=3 {4x1+7x2+x3=10 {x2-x3=b {2x1+3x2+αx3=4 无解、
- 2024-11-07 03:14:13
- 线性代数(工)(13175)