已知齐次线性方程组
(1):
{x1+2x2+3x3-x4=0
{2x1+3x2+x3+x4=0
(2):
{3x1+2x2+x3-x4=0
{5x1+5x2+2x3=0
求方程组(1)与(2)的全部非零公共解.
【正确答案】:若(1)(2)有非零公共解,则方程组
{x1+2x2+3x3-x4=0
{2x1+3x2+x3+x4=0
{3x1+2x2+x3-x4=0
{5x1+5x2+2x3 =0
有非零解,对其系数矩阵作初等行变换
A=
(1 2 3 -1
2 3 1 1
3 2 1 -1
5 5 2 0)
→
(1 2 3 -1
0 -1 -5 3
0 -4 -8 2
0 -5 -13 5
→
(1 2 3 -1
0 1 5 -3
0 0 12 -10
0 0 0 0)
→
(1 0 -7 5
0 1 5 -3
0 0 1 -5/6
0 0 0 0)
→
(1 0 0 -5/6
0 1 0 7/6
0 0 1 -5/6
0 0 0 0
由于系数矩阵的秩为3,所以基础解系由4-3=1个解向量构成,取x4为自由未知量,得同解
方程组
{x1=(5/6)x4
{x2=-(7/6)x4
{x3=(5/6)x4
取x4=1,得基础解系ξ=
(5/6
-7/6
5/6
1),
故其通解为cξ(c为任意常数),因此(1)(2)有非零公共解
( 5/6
-7/6
5/6
1)
(c为任意常数).
已知齐次线性方程组 (1): {x1+2x2+3x3-x4=0 {2x1+3x2+x3+x4=0 (2): {3x1+2x2+x
- 2024-11-07 03:14:11
- 线性代数(工)(13175)