【正确答案】:证明:(1)先证明
R是复数集合,对加法是封闭的;加法也满足结合律和交换律;
0是加法幺元,对每个复数a+bi,-a-bi是其逆元。
综上,
②
乘法在复数集合上是封闭的;
∀r1,r2,r3∈R,设r1=a+bi,r2=c+di,r3=e+fi,
(r1*r2)*r3=((a+bi)*(c+di)*(e+fi)=((ac-bd)+(bc+ad)i))*(e+fi)
=(ace-bde-adf-bcf)+(acf-bdf+ade+bce)i
r1*(r2*r3)=(a+bi)*((c+di)*(e+fi))=(a+bi)*((ce-fd)+(ed+cf)i)
=(ace-adf-bcf-bde)+(acf+ade+bce-bdf)i
所以,(r1*r2)*r3=r1*(r2*r3),运算*满足结合律,
③运算*对+可分配;
∀r1,r2,r3∈R,r1*(r2+r3)=(a+bi)*(c+di+e+fi)
=(ac+ae-bd-bf)+(ad+af+bc+be)i
而r1*r2+r1*r3=(a+bi)*(c+di)+(a+bi)*(e+fi)
=(ac+ae-bd-bf)+(ad+af+bc+be)i
所以r1*(r2+r3)=r1*r2+r1*r3,运算*对+满足分配律;
所以
①运算*满足交换律;
∀r1,r2∈R,r1*r2=(a+bi)*(c+di)=(ac-bd)+(bc+ad)i
r2*r1=(c+di)*(a+bi)=(ac-bd)+(bc+ad)i,
r1*r2=r2*r1,运算*满足交换律;
②运算*有幺元;
∀r∈R,r*(1+0i)=(a+bi)*(1+0i)=a+bi,(1+0i)是幺元;
③无零因子;
(0+0i)是加法幺元,∀r1,r2∈R,若r1*r2=(a+bi)*(c+di)=(ac-bd)+(bc+ad) i=0+0i,
则ac-bd=0,bc+ad=0,整理得b/c(c2+d2)=0,(a2+b2)d=0
若r2≠0,则b=0且a=0;若r1≠0,则c=0且d=0;
故
综上,