设f(x)=x(x+1)(x+2)…(x+n),则f''(0)=_____.
【正确答案】:n! 解析: 设g(x)=(x+1)(x+2)…(x+n),则f(x)=xg(x),于是f''(x)=g(x)+ xg''(x),所以f''(0)=g(0)+0•g''(0)一g(0)=1•2•…•n=n!.
设f(x)=x(x+1)(x+2)…(x+n),则f''(0)=_____.
- 2024-09-16 20:46:04
- 数学(理工)(高升专)(c0002l)