设f0(x)=sinx,f1(x)=f′0(x),f2(x)=f′1(x),…fn+1(x)=)f′n(x),n∈N“,则f2010(x)____.
【正确答案】:-sinx。因为f1(x)=(sinx)´=cosx,f2(x)=(cosx)´,=-sinx,f3(x)=(-sinx)´,=-cosx,f4(x)=(-cosx)´,=sinx,f5(x)=(sinx)´,=f1(x),f6(x)=f2(x),….所以fn+4(x)=fn(x),即周期T为4.所以f2010(x)=f2(x)=-sinX.
设f0(x)=sinx,f1(x)=f′0(x),f2(x)=f′1(x),…fn+1(x)=)f′n(x),n∈N“,则f20
- 2024-09-16 19:48:04
- 数学(文史类)(高升专)(c0002)