求函数ƒ(x)=cosx[(cosπ/5)2-1/2]-(1/2)sinxsin(2π/5)的最小值.
【正确答案】:ƒ(x)=(1/2)cosx(2cos2π/5-1)-(1/2)sinxsin(2π/5) =1/2(cosxcos2π/5-sinxsin2π/5) =1/2cos(x+2π/5) 当cos(x+2π/5)=-1时, ƒ (x)取最小值-(1/2).
求函数ƒ(x)=cosx[(cosπ/5)2-1/2]-(1/2)sinxsin(2π/5)的最小值.
- 2024-09-16 19:48:43
- 数学(文史类)(高升专)(c0002)